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Abstract The wear of materials continues to be a limiting
factor in the lifetime and performance of mechanical sys-
tems with sliding surfaces. As the demand for low wear
materials grows so does the need for models and meth-
ods to systematically optimize tribological systems. Elastic
foundation models offer a simplified framework to study
the wear of multimaterial composites subject to abrasive
sliding. Previously, the evolving wear profile has been
shown to converge to a steady-state that is characterized
by a time-independent elliptic equation. In this article, the
steady-state formulation is generalized and integrated with
shape optimization to improve the wear performance of
bi-material composites. Both macroscopic structures and
periodic material microstructures are considered. Several
common tribological objectives for systems undergoing
wear are identified and mathematically formalized with
shape derivatives. These include (i) achieving a planar wear
surface from multimaterial composites and (ii) minimiz-
ing the run-in volume of material lost before steady-state
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wear is achieved. A level-set based topology optimization
algorithm that incorporates a novel constraint on the level-
set function is presented. In particular, a new scheme is
developed to update material interfaces; the scheme (i) con-
veniently enforces volume constraints at each iteration, (ii)
controls the complexity of design features using perime-
ter penalization, and (iii) nucleates holes or inclusions with
the topological gradient. The broad applicability of the pro-
posed formulation for problems beyond wear is discussed,
especially for problems where convenient control of the
complexity of geometric features is desired.

Keywords Wear · Tribology · Steady-state · Geometric
constraints · Shape optimization · Level-set method ·
Perimeter penalization · Topological gradient

1 Introduction

The design of wear surfaces is an interdisciplinary endeavor
often involving mechanics, materials, and chemistry. Wear
is a facet of tribological systems that refers to the gradual
removal of a material from surfaces of solids subject to con-
tact and sliding (Hatchett (1803), Archard (1953), Archard
and Hirst (1956)). Abrasive sliding wear is the removal
of material from a surface that is sliding against another
surface, typically harder materials against softer materi-
als (see Fig. 1a) (Rabinowicz and Mutis (1965), Lancaster
(1969), Sin et al. (1979), Khruschov (1974), Rabinowicz
et al. (1961)). Friction is commonly considered an instanta-
neous process (and frictional losses are of particular interest
in engineering systems). Wear of tribological systems is
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Fig. 1 a Schematic of abrasive wear between a hard asperity and a
sample. b Illustration defining Archard wear rates.

caused by continuous frictional interactions between two
surfaces in contact. These interactions lead to damage of
a material’s microstructure near the surface. This damage
accumulates until portions of the material’s surface are
removed, which over time can cause failure at the con-
tact interface. In this context, friction and contact models
are used to optimize system properties and characteristics
such as fracture resistance, frictional energy loss, and heat
generation with respect to specific and instantaneous load-
ing conditions (Hilding et al. (1995), Challis et al. (2008),
Schmidt and Hattel (2008)). In contrast, optimizing wear
performance is critical to improve the durability of systems
subjected to continuous abrasion.

Predicting the wear performance of a system, such as
the topographical evolution of a wearing surface or the vol-
ume of material lost during wear is of practical interest in
many industrial applications. For example, these predictions
can be used in the mechanical design of components and
to estimate service life (Põdra and Andersson (1997), Põdra
and Andersson (1999a), Põdra and Andersson (1999b), Kim
et al. (2005), Mukras et al. (2010), Mukras et al. (2009),
Lengiewicz and Stupkiewicz (2013), Fregly et al. (2005),
Chongyi et al. (2010), Telliskivi (2004), Sawyer et al.
(2014)). Most wear models involve mechanics-based rela-
tions between geometry, pressure, and material wear prop-
erties for a given configuration of materials. Every material

system has some resistance to material removal that is
described by a parameter called the wear rate (Fig. 1b). This
wear rate is a system parameter that depends on the com-
binations of constituent materials, environmental effects,
sliding conditions, etc. (Blau (1997), Sawyer et al. (2014),
Zum Gahr (1987)). Wear rates can be experimentally
measured for materials using several standard procedures
(ASTM Standard D3702-94 (1974/2014), ASTM Standard
G77-05 (1983/2010), ASTM Standard G99-05 (1990/2010),
Archard and Hirst (1956), Colbert et al. (2011), Schmitz
et al. (2004), Rowe et al. (2014), Erickson et al. (2015)).
Depending on a model’s level of complexity, these wear
rates may be further related to material hardness, ductility,
surface chemistry, and adhesion (Zum Gahr (1987)).

To date, many techniques have been proposed to sim-
ulate wear that range from molecular dynamics to sim-
ple analytical models (Blanchet (1997), Sawyer (2001),
Dickrell and Sawyer (2004), Telliskivi (2004), Põdra and
Andersson (1999b), Mukras et al. (2009), Johansson (1994),
Dickrell et al. (2003), Kim et al. (2005), Rowe et al. (2014),
Sawyer (2004), Sawyer et al. (2014), Jang et al. (2007)).
Most often the approach consists in simulating the wear
evolution of a surface with iterative schemes by assum-
ing a relation between material removal rates and local
contact pressures. Each iteration evaluates the pressure dis-
tribution on the contact surface and with this pressure,
updates the geometry of the contact. As a consequence,
the design of tribological systems has primarily been stud-
ied with these numerical iterative schemes. The absence
of explicit, generic and continuous formulations as well
as the computational cost associated with the use of these
iterative procedures have prevented modern topology opti-
mization and control techniques from being systematically
applied to wearing systems (Feppon et al. (2015)). For-
mally optimizing wear performance is the focus of this
article. In particular, sliding abrasive wear will be consid-
ered because simplified mechanical models have already
been developed and experimentally validated for this kind
of wear (Põdra and Andersson (1999b), Fregly et al. (2005),
Kim et al. (2005), Blanchet (1997), Dickrell et al. (2003),
Sawyer (2004), Rowe et al. (2014)). Predicting wear per-
formance remains an open domain, rich with challenges for
industries aiming to design systems with improved or target
wear characteristics (Tankala and Kapoor (2001), Barron
(1982), Prasad (2000)). Few attempts have been made to
improve the wear performance of systems with mathemat-
ical optimization (Páczelt and Mróz (2005), Willing and
Kim (2009), Markine et al. (2007), Choi et al. (2013)).
These works have focused on optimizing indirect factors,
such as contact forces or the pressure distributions for which
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contact optimization theory is available (Hilding et al.
(1995), Myśliński (2012), Strömberg and Klarbring (2010),
Neittaanmäki et al. (1988)), without optimizing for wear and
its long-term effects.

In Feppon et al. (2015), it has been shown that the well-
established framework offered by elastic foundation models
(Kerr (1964), Pasternak (1954)) allows one to propose a
continuous and mathematically well-posed formulation for
the abrasive sliding wear of composites or heterogeneous
materials. Foundation models simplify the contact mechan-
ics analysis by postulating explicit relationships between
surface topography and pressure distributions (Fig. 2).
While the contact mechanics analysis is simplified, they are
nevertheless commonly accepted and experimentally vali-
dated models for calculating contact pressure distributions
(Põdra and Andersson (1999b), Kim et al. (2005), Fregly
et al. (2005), Sawyer (2001)). Experimentally, it is well-
known that, under a constant average pressure load, the
wear of an initially flat, heterogeneous distribution of mate-
rials may lead to a non-planar worn surface. Eventually, the
recessing wear profile reaches a steady-state that continues
to recess at a constant rate (Rowe et al. (2014), Lee et al.
(2002), Hilding et al. (2001), Axén and Jacobson (1994)).
This transient period before steady-state is reached is com-
monly called “run-in” wear. Foundation models mathemati-
cally recover this run-in characteristic through the existence
of a corresponding asymptotic expansion of the wearing
profile (Feppon et al. (2015)). Remarkably, the limit steady-
state profile can be determined explicitly from the solution
of a time-independent, elliptic partial differential equation.
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Fig. 2 Representation of the evolution of topography and pressure dis-
tribution for an initially flat bi-material surface. a Initial distribution of
two materials (material “a” and material “b”) along the sliding surface.
b Example evolution of contact pressure and surface topography for a
bi-material surface after 0, 50, and 250 sliding cycles

This facilitates the possibility to apply modern topology
optimization techniques with the goal of improving the wear
performance of tribological systems (Bendsøe and Sigmund
(2003), Allaire (2007a), Eschenauer and Olhoff (2001),
Vermaak et al. (2014)). The formulation proposed herein is
also compatible with other elliptic models, which could be
used for example, to explore multi-physics wear optimization.

In this article, for the first time, a topology optimization
framework is proposed for wear applications. The focus will
be on linear abrasive sliding wear for which sliding direc-
tion is fixed. A generalization of the wear model employed
in (Rowe et al. (2014), Feppon et al. (2015), Sawyer (2004)),
that is mathematically suitable for topology optimization, is
introduced in Section 2. Governing equations for the corre-
sponding steady-state solution are explained. A relaxation
result is proven in Section 3 that gives insight into the
relationships between wear-optimal material distributions,
material volume fractions, and material microstructures.
The limitations of the underlying foundation models and
the consequences for the topology optimization of macro-
scopic structures and periodic material microstructures are
discussed. Objective functions for common wear perfor-
mance metrics and their shape derivatives are calculated.
Minimizing these objectives with level-set based topology
optimization methods (Osher and Sethian (1988), Allaire
et al. (2004), Wang et al. (2003)) is considered in Section 4
for 2D multimaterial composites. This article also presents
a new way to control the complexity of design features that
is broadly applicable beyond wear and tribological prob-
lems. The level-set based topology optimization method
presented uses a novel constraint on the level-set function
(Section 5). This results in an evolution equation that can be
used to simultaneously update the geometry (by moving the
bi-material interface) and the topology (by nucleating holes
or inclusions). It is also shown that the simplicity of the
evolution equation allows one to both easily impose equal-
ity volume constraints at each iteration, and to control the
complexity of design features through perimeter penaliza-
tion. Numerical results and optimal material distributions
are presented and discussed in Section 6.

2 Time-independent steady-state model
for abrasive sliding wear

2.1 Governing equation for an evolving wear profile

In the following, a multimaterial composite system, �, sub-
ject to abrasive sliding wear is assumed. The resistance to
material removal in each point of the domain, x ∈ �, is
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Fig. 3 Schematic of the bi-material distribution

characterized by a wear rate coefficient, K(x). Mathemati-
cally, K may be any measurable function satisfying Kmin �
K � Kmax for some Kmin, Kmax > 0. For a multimaterial
distribution, K is a piecewise constant function in each of
the material phases (Fig. 3). The wear profile height, z(s, x),
depends on the 2D position, x, and on the distance of abra-
sive sliding, s. Classically in wear prediction, Archard’s law
(Archard and Hirst (1956)) states that the layer of material,
dz, to be removed after a distance of sliding, ds, is propor-
tional to the material wear rate and to the pressure load, p, at
each point. As wear is assumed to be a continuous process,
the following relationship for the wearing profile height,
z(s, x), can be derived (Feppon et al. (2015)):

∂z

∂s
= −pK. (1)

In Rowe et al. (2014), Feppon et al. (2015), Sidebottom
et al. (2015), a Pasternak elastic foundation model (Kerr
(1964), Pasternak (1954)) was assumed to characterize the
pressure distribution, p, with a constant average pressure con-
straint (Feppon et al. (2015)), < p >= 1

|�|
∫

�
pdx = P0:

p = P0 + ks(z− < z >) − kg(�z− < �z >), (2)

where �z = ∂2z

∂x2
+ ∂2z

∂y2
is the Laplacian of z, and ks, kg > 0

are two elastic foundation parameters. Elastic foundation
models assume that wear contact can be described in the
context of a bed of spring elements (with rigidity ks) that
are coupled with a bending beam element (characterized by
a tension constant kg , Fig. 4). Thus, the contact pressure
distribution is related to the deflection of each spring ele-
ment and to the local curvature, �z (Kerr (1964), Pasternak
(1954), Sawyer (2004)).

Before discussing the boundary conditions for z, the solu-
tion of (2), it should be noted that the approach presented
is general and can accommodate most types of boundary
conditions. This includes even more general affine differ-
ential relationships than (2) between the profile height, z,

material amaterial a material b

composite sample

rigid foundation (countersample)

contact mechanics framework:
thin beam on elastic foundation

local contact pressure, p

evolving
surface shape

evolving 
local contact
pressure, p

h KP s∆ = ∆

p = P0 + ks (z − < z > ) − kg (∆z − < ∆z >)

k   (compression)s
k   (bending)g

Fig. 4 Physical description of the numerical wear model. The Paster-
nak elastic foundation model is composed of spring elements that are
coupled with bending beam elements; the corresponding parameters
are ks and kg , respectively. The pressure applied at each node is a
function of the deflection of the spring element and the local curvature

and the pressure distribution, p. For example, a more gen-
eral relation is found by introducing a weak formulation
of the equations, namely a bilinear form a and a linear
form l, defined on H 1(�), the classical Sobolev space of
bounded energy functions (see Allaire (2007b)). This allows
one to express the dependence between the profile height,
z ∈ H 1(�), and the pressure,p ∈ L2(�), in a weak form as:

∀v ∈ H 1(�),

∫

�

pvdx = −l(v) + a(z, v). (3)

The average pressure constraint, < p >= P0, that must be
satisfied by any profile, z ∈ H 1(�), is ensured by requir-
ing that the bilinear form, a, is null on the constants and
l(1) = −|�|P0. The time dependent equation describing
the evolution of the profile, z, is obtained by combining (1)
and (3) (see Feppon et al. (2015)), and is written in the weak
form Allaire (2007b) as:

Find z∈L2(]0, T [; H 1(�))∩ C([0, T ]; L2(�)) such that

∀s�0, ∀v ∈ H 1(�),
d

ds

∫

�

zv

K
dx+a(z, v)= l(v).

(4)

Of course, (4) must be supplemented with some initial
conditions, z0 ∈ L2(�), such that z(0, ·) = z0. For
physical applications, this article considers an extension of
the Pasternak foundation model by introducing a reference
pressure, f ∈ L2(�), satisfying:

< f >= P0, (5)

and by replacing (2) with:

p = f + ks(z− < z >) − kg(�z− < �z >). (6)

The reference pressure profile in (Feppon et al. (2015),
Rowe et al. (2014), Sawyer (2004)) and (2) was assumed
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to be flat, that is f = P0. The introduction of a non-
constant parameter, f, can be motivated by the fact that the
pressure distribution for a flat profile, z = 0, may not be
uniform. Indeed, flat punch contact theory predicts that a
non-uniform pressure profile (with elevated values at the
edges) results from the contact between a rigid flat body on
a Pasternak foundation (Ciavarella et al. (1998), Marzeda
et al. (2001)) (see Fig. 5). The further relevance of the
introduction of this parameter will be discussed in Section 6.

Boundary conditions in addition to (6) are required to
ensure the well-posedness of the model. In Rowe et al.
(2014), Feppon et al. (2015), periodic boundary conditions
were considered by tribologists because they were both con-
veniently implemented in iterative schemes and compatible
with the study of multimaterial composites on a periodic,
unit-cell basis. For these reasons, they will be used for
the topology optimization results presented in Section 6.
As far as the authors are aware, no other boundary con-
ditions have been proposed in the available wear literature
for these elastic foundation models. The analysis performed
here shows that the following Fourier boundary conditions
for the profile, z, are also mathematically suitable:

kg

∂z

∂n
+ β(z− < z >) = g, (7)

where β is a positive bounded function, g represents a load
on the boundary ∂�, and n is the outward normal to the
boundary ∂�. Note that in this more general framework,
Dirichlet boundary conditions (z =< z >) are found by
taking the limit, β → +∞. With this set of boundary con-
ditions, the bilinear form a and the linear form l of (3) are
given by:

a(u, v) = ∫
�
ks(u− < u >)(v− < v >) + kg∇u · ∇vdx

+β
∫

∂�
(u− < u >)(v− < v >)ds,

(8)

Fig. 5 Theoretical flat punch pressure profile (from Ciavarella et al.
(1998))

l(v) = −
∫

�

f vdx +
∫

∂�

g(v− < v >)ds. (9)

Periodic boundary conditions are also included in
this analysis, as all of the expressions obtained in this
paper with homogeneous Neumann boundary conditions(

∂z
∂n

= 0 on the boundary,∂�
)

can also be used without
modification, for the case of periodic boundary conditions.
This is because both boundary conditions share identical
variational formulations. Indeed in both cases, the aver-
age local change in height is null, that is < �z >=
1

|�|
∫

∂�
∂z
∂n
ds = 0.

Finally, the weak time-dependent system of (4) can be
written in the strong form to characterize the evolving wear
profile, z:

{ 1
K

∂z
∂s

+ks(z−< z >)−kg(�z− < �z >) = −f in �

kg
∂z
∂n

+ β(z− < z >) = g on ∂�.

(10)

2.2 A steady-state time-independent formulation

It has been shown in Feppon et al. (2015) that the gen-
eral variational formulation expressed in (4) allows one to
derive a time-independent governing set of equations. The
following asymptotic expansion for a wear profile, z, was
established:

Proposition 1 Assume that the bilinear form a, defined by
(8), satisfies the following hypotheses:

(i) a is coercive on the space VK ={
v ∈ H 1(�)

∣
∣
∫

�
v
K
dx = 0

}

(ii) a vanishes for constants, namely a(1, v) = a(v, 1) =
0 for any v ∈ H 1(�)

Then, there exists a unique u ∈ VK solution of:

∀v ∈ VK, a(u, v) = l(v), (11)

or equivalently, assuming l(1) = −P0|�|, u ∈ VK is the
unique solution of

∀v ∈ H 1(�), a(u, v) = l(v) + P0

∫

�

< K−1 >−1

K
vdx.

(12)

Similarly, (4) admits a unique solution z, satisfying the ini-
tial condition, z(0, ·) = z0 ∈ L2(�). Furthermore, there
exists a constant λ > 0, such that the following asymptotic
expansion holds true:

∀s�0, z(s, x) = −P0 < K−1 >−1 s +
〈
< K−1 >−1

K
z0

〉

+u(x) + g(s, x), (13)
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with g satisfying
〈
g(s,·)

K

〉
= 0 for any s � 0 and

∀s�0, ||g(s, ·)||K �e−λs

∣
∣
∣
∣

∣
∣
∣
∣z0 −

〈
< K−1 >−1

K
z0

〉

− u

∣
∣
∣
∣

∣
∣
∣
∣
K

,

(14)

where || · ||K is the equivalent quadratic norm defined for

all v ∈ L2(�) by ||v||K =
√∫

�
v2

K
dx.

Equation (12) can be physically interpreted as the fact
that the asymptotic pressure, psteady , must be proportional
to the inverse of the wear rate distribution, K, that is
(see (3)):

psteady = P0
< K−1 >−1

K
. (15)

This result is of practical importance for the analysis of
wear profiles. The asymptotic expansion (13) shows that the
wear profile, z, is an affine function of the sliding distance,
s, up to a remainder term, g, which is exponentially decay-
ing with s. In other words, for large sliding distance s, the
wear profile z admits a rigid profile, u, which recesses at
the equivalent wear rate, < K−1 >−1. To first order, (13)
proves that the total loss in height is asymptotically pro-
portional to the pressure load, P0, the sliding distance, s,
and the equivalent wear rate < K−1 >−1. The expression
for the wear rate (< K−1 >−1) is also the “inverse rule
of mixtures” or “harmonic mean” from classical composite
theory (Han and Blanchet (1997), Lee et al. (2002), Axén
and Jacobson (1994)). For example, in the case of a system
with two materials (A and B) that have wear rates Ka and
Kb, and an area fraction A∗ of material A, the rule of mix-
tures is usually written (Rowe et al. 2014; Hovis et al. 1986;
Han and Blanchet 1997):

< K−1 >−1= Ka

A∗ + Ka

Kb
(1 − A∗)

. (16)

In the physical case where the bilinear and the linear
forms, a and l, are given by (8) and (9), with f satisfying
< f >= P0, the steady-state profile, u, defined by (12),
can be rewritten as the unique solution in H 1(�) of the
differential system:

⎧
⎨

⎩

ks(u−< u >)−kg(�u−< �u >) = −f + P0
<K−1>−1

K
in �

kg
∂u
∂n

+ β(u− < u >) = g on ∂�〈
u
K

〉 = 0.

(17)

This governing (17) is a versatile formulation that is
convenient to study the long-term wear of multimaterial
composites. In addition to the substantial computational
gain discussed in Feppon et al. (2015), this formulation is

also well suited for optimization; this is in contrast to tra-
ditional iterative schemes in the wear literature. The key
factor is the introduction of explicit continuous governing
equations. Directly considering the steady-state wear pro-
file, u, instead of the recessing time-dependent wear profile,
z, allows one to formulate wear optimization problems that
have the advantage of depending only on the distribution of
material, K, and not on an arbitrarily-fixed sliding distance
(a parameter that can be interpreted as a pseudo-time) or on
an initial profile, z0. The solution of the system (17) can be
computed in practice by using the following proposition.

Proposition 2 Let f1 ∈ L2(�) and g1 ∈ L2(∂�) be two
functions such that < f1 >= 0. Let w0 and w1 be the
unique solutions in H 1(�) of:
{

ksw0 − kg�w0 = f1 in �

kg
∂w0
∂n

+ βw0 = g1 on ∂�,
(18)

{
ksw1 − kg�w1 = 1 in �

kg
∂w1
∂n

+ βw1 = 0 on ∂�.
(19)

Then the unique solution, u0, in H 1(�) of the system:
⎧
⎨

⎩

ks(u0− < u0 >) − kg(�u0− < �u0 >) = f1 in �

kg
∂u0
∂n

+ β(u0− < u0 >) = g1 on ∂�

< u0 > = 0,

(20)

is given by:

u0 = w0− < w0 >
w1

< w1 >
. (21)

Proof The result is easily obtained by checking that the
variational formulation of (20), found using Green’s iden-
tity, and that of w0− < w0 >

w1
<w1>

, are identical.

Equations (18) and (19) can be solved using a standard
finite-element solver such as FreeFem++ (Hecht (2012)).
For the remainder of this work:

f1 = −f + P0
< K−1 >−1

K
and g1 = g. (22)

Then, computing the solution, u0, of (20) allows one to
determine the steady-state profile, u (17), from the relation:

u = u0 −
〈
< K−1 >−1

K
u0

〉

. (23)

3 A relaxation result in the context of topology
optimization

In the following, the bilinear and linear forms a and l are
assumed to be independent of the material distribution K,
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and a is also assumed to be coercive on the space V1 =
{v ∈ H 1(�)| < v >= 0}. This is the case in previous
works that use the Pasternak foundation model (Rowe et al.
(2014), Sidebottom et al. (2015)) and in (2), but it is also
true for the extended model (5–9) considered here. For any
wear-rate coefficient, K ∈ L∞(�), satisfying 0 < Kmin �
K � Kmax , the notation u0(K) = u(K)− < u(K) >

is used where u(K) denotes the solution of (12). Equiva-
lently, u0(K) is the unique solution in V1 of the variational
problem:

∀v ∈ V1, a(u0(K), v) = l(v) + P0J (K)(v), (24)

where the linear form J (K) depends on the wear-rate
coefficient, K, and is defined by:

∀v ∈ L2(�), J (K)(v) =
∫

�

< K−1 >−1

K
vdx. (25)

It was shown in the previous section that the steady-state,
u(K), defined by (12), is related to u0(K) by means of
an additive constant (see (23)). For this reason, the term
“steady-state” will be used in the following to designate
both u(K) ∈ VK as well as u0(K) ∈ V1.

Topology optimization is now considered in the frame-
work of Proposition 1. Improving the wear performance of
a given in-plane configuration of materials, K, is accom-
plished by optimizing the corresponding steady-state wear
profile, u0(K). In the following, the system is assumed to
be comprised of two materials, A and B, with wear rates
Ka, Kb. There is a sub-domain, �a ⊂ �, filled with mate-
rial A, and the complementary,�\�a , is filled with material
B (Fig. 3). This means that the coefficient, K(�a), is given
by:

K(�a) = (Ka − Kb)1�a + Kb, (26)

where 1�a is the characteristic function of the domain �a .
A general optimization problem for wear with volume

constraints is expressed as:

inf
�a, θ-|�|�|�a |�θ +|�|J (u0(K(�a))), (27)

where J is assumed to be a continuous function from
H 1(�) in R, bounded from below, and 0 ≤ θ− � θ+ ≤ 1
are two parameters that allow for equality or inequality
volume constraints to be considered.

A relaxed formulation of (27) is found by replacing the
characteristic function, 1�a , by a density function, θ ∈
L2(�, [0, 1]) (Allaire (2002)). The function θ can be inter-
preted as a density ratio between materials A and B. The
only subtle point is that the variable coefficient K(�a) is
replaced by its harmonic mean, K(θ), defined by:

1

K(θ)
= θ

Ka

+ 1 − θ

Kb

. (28)

The relaxation of (27) is then:

inf
θ∈L2(�), θ-�<θ>�θ+

J (u0(K(θ))), (29)

where u0(K(θ)) is a solution of (24) with the linear form
J (K) defined by (25) and K = K(θ). The justification of
such a relaxed formulation is given by the following result
which states that, in some sense, (29) is equivalent to the
initial optimization problem (27).

Proposition 3 The formulation of (29) is the relaxation of
the shape optimization problem (27) in the following sense:

(i) There exists an optimal density θ∗ ∈ L2(�, [0, 1])
which minimizes (29).

(ii) For any minimizing sequence of sub-domains (�n
a)

for the problem (27), the associated sequence of
characteristic functions 1�n

a
converges weakly in

L2(�), up to a subsequence, to a minimizer θ∗ for
the problem (29).

(iii) Any minimizer of (29) is attained as the limit of a
minimizing sequence of sub-domains (�n

a) for (27).

In particular, the optimization problem (27) and its relax-
ation (29) share the same minimal value:

min
θ∈L2(�), θ-�<θ>�θ+

J (u0(K(θ))) = inf
�a, θ-|�|�|�a |�θ+|�|J (u0(K(�a))).

(30)

Proof The proof requires only classical arguments of weak
convergence in Hilbert spaces and does not rely on more
involved arguments of homogenization theory (see e.g.
Allaire (2002)). This simple proof is possible because the
solution, u0(K(�a)), of (24) depends on the sub-domain,
�a , only through the linear form, J (K(�a)), in the right
hand side of the equation, which itself depends on the char-
acteristic function 1�a . Since the sequence of characteristic
functions, 1�n

a
, is bounded in L2(�), one can extract a sub-

sequence which converges weakly to a limit, θ , in L2(�).
Therefore, for this subsequence, the average < K(�n

a)
−1 >

converges to < K(θ)−1 > and:

∀v ∈ L2(�), lim
n→+∞

∫

�

v

K(�n
a)
dx =

∫

�

v

K(θ)
dx.

As a consequence it can be shown, by taking the limit in
the variational formulation (24), that the sequence of solu-
tions u0(K(�n

a)) is also converging strongly in H 1(�) to
the solution u(K(θ)). Indeed, the convergence:

∀v ∈ V 1, lim
n→+∞ J (K(�n

a))(v) = J (K(θ))(v),

together with the coercive character of a, implies the weak
convergence in H 1(�) of u0(K(�n

a)) towards the limit
u0(K(θ)). Then, due to the Rellich compactness theorem,
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the convergence holds strongly in L2(�). Eventually, using
equation (24) with the test function v = u0(K(�n

a)) yields
the strong convergence of the sequence in H 1(�).

Note that the above convergence holds for any sequence
of sub-domains �n

a , whether it is a minimizing sequence or
not. From this property, finishing the proof of the proposi-
tion follows the classical approach (see Allaire (2002) for
details). In particular, by continuity, the values of the objec-
tive function (J (u0(K(�n

a))) are also converging to the
limit value J (u0(K(θ)). As a consequence, the infimum
of equation (27) remains unchanged by replacing the vari-
able set, {K(�a) | �a ⊂ �}, with its weak closure, that is
the set {K(θ)|θ ∈ L2(�, [0, 1])} (see Lemma 4.2 in Tartar
(2009)).

The term minimizing sequences refers to sequences
of material distributions whose cost function values are
decreasing to the infimum. The limit coefficient, K(θ) is
thus in general not of the form K(�∗

a), for a certain sub-
domain �∗

a ⊂ �, since the limit density θ can take any
pointwise values between 0 and 1.

This relaxation result (30) has an important consequence.
Numerically it is observed that a minimizing sequence of
bi-material wear coefficients, K(�n

a), converging weakly to
K(θ), is in fact converging to a highly-distributed composite
material with a volume fraction, θ(x) of material A and (1−
θ(x)) of material B, at every point, x ∈ �.

When a material discontinuity is present in the second
order differential operator of the elliptic equation (for exam-
ple when considering discontinuous thermal conductivity
or elasticity tensors), the weak convergence of the material
distribution does not imply the strong convergence of the
associated solution. Indeed, it does not imply that the con-
vergence of the differential operator depends on the mate-
rial distribution. Instead, homogenization theory predicts
that additional sub-sequences must be extracted to obtain
the convergence (in the sense of H−convergence) of the
differential operator to an effective, homogenized, tensor. In
the context of periodic homogenization theory (Murat and
Tartar (1985), Allaire (2002), Bendsøe and Kikuchi (1988)),
the properties of the homogenized tensor are characterized
by a unit-cell problem that defines a microstructure for the
limit anisotropic material. The infimum of the objective
function is attained for both a limit fractional distribution of
the two materials, and an asymptotic anisotropy described
by the homogenized limit of the differential operator. In the
case of the steady-state (24), the differential operator does
not depend on the material distribution and thus does not
lead to effective anisotropic homogenized tensors.

Thus, as is highlighted by the relaxation result of (30),
the limit volume fraction is the sole parameter driving
the optimization process. Within the field of tribology, it
has been experimentally established that wear properties

of composite materials do in fact depend on their physical
microstructures or anisotropy (Zmitrowicz (2006), Sawyer
et al. (2014)). This highlights the limitations of the under-
lying wear model: it is limited at small scales when the
distribution of materials within the composite would begin
to affect the microstructure of its constituents. This is not
surprising because Archard’s law (1) is itself based on
the empirical observation that the average worn volume
of material is proportional to the sliding distance. If the
microstructure of the constituent materials is significantly
altered, the assigned wear rates would no longer be valid.
Therefore the law breaks down at a scale that is compara-
ble to the size of the fragments of worn material (Zum Gahr
(1987)).

Nevertheless this model remains suitable for optimizing
the wear performance of multimaterial composites as long
as a physical length scale for a minimum feature size is
specified. For example, a minimum thickness length scale
in each material phase or a minimum radius of curvature
along material interfaces may be prescribed. Numerically,
identifying microstructures with target wear performance
and desired feature control is the focus of the following
Section 5. Topology optimization will be used to improve
upon typical composite wear designs without significant
increase in geometric complexity.

4 Defining optimization objectives: minimizing
run-in-wear volume and achieving planar
steady-state surfaces with multimaterial
composites

4.1 Minimizing run-in-wear volume loss

Improving the wear performance of tribological systems can
be done by minimizing the volume of material lost during
the transient run-in period (here equal to −∫

�
z(s, x)dx).

By definition, wear involves material removal, but material
lost during transient wear is considered a waste to be min-
imized. This material loss quantity is defined with respect
to a given sliding distance, s, and is consequently time-
dependent. Instead, (13) simplifies the analysis by providing
an asymptotic expansion for the volume lost:

−
∫

�

z(s, x)dx = P0 < K−1 >−1 |�|s

−
(∫

�

< K−1 >−1

K
z0dx +

∫

�

udx

)

+G(s), (31)

where G(s) is decreasing exponentially to zero with the
sliding distance, s.

Equation (31) shows that the first term to be considered
when comparing the volume of material lost between two
material distributions, is the quantity: P0 < K−1 >−1 |�|s.
Consequently, to first order, the volume of material lost
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is related to the equivalent wear rate, < K−1 >−1, and
the asymptotic comparison of two initial distributions has
a physical meaning only if their respective equivalent wear
rates are equal. As the equivalent wear rate

< K−1 >−1=
[(

1

Ka

− 1

Kb

) |�a|
|�| + 1

Kb

]−1

(32)

depends only on the proportion of the domain, �a filled by
material A, this constraint implies that the volume fractions
(θ0 and 1 − θ0 for the constituent materials A and B) must
be fixed in the domain:

|�a| = θ0|�|.
Once the volume fraction, θ0, is prescribed, the compar-

ison between two configurations of materials can be made
by examining the second term of the asymptotic expansion
(31):

Vlost = −
(∫

�

< K−1 >−1

K
z0dx +

∫

�

udx

)

=
∫

�

< K−1 >−1

K
(u0 − z0)dx. (33)

This quantity is the volume of material lost due to the
transient run-in wear period when the initial profile, z0,
converges to the steady-state profile, u0. In this way, the
quantity Vlost , defined by (33), enables one to compare the
wear performance of material distributions for any choice
of initial profile, z0. In the case of an initially flat pro-
file, z0 = 0, the more general quantity, Vlost , is called the
run-in-wear volume, Vrun−in, in deference to the terminol-
ogy used by the tribology community (Sawyer et al. (2014),
Chattopadhyay (2001)):

Vrun−in = J (K)(u0) =
∫

�

< K−1 >−1

K
u0dx. (34)

The run-in-wear volume is determined assuming a known
in-plane material distribution, K, and a fixed value of the
equivalent wear rate, < K−1 >−1. This unambiguously
defines what is usually interpreted by tribologists as the
volume lost before reaching steady-state wear (Hirst and
Lancaster (1956)). The optimization problem is then set on
the fixed space, V1 = {v ∈ H 1(�)| < v >= 0}:
inf

�a⊂�
J (K)(u0),

under the constraints:
⎧
⎪⎪⎨

⎪⎪⎩

K = K(�a) = (Ka − Kb)1�a + Kb

|�a| = θ0|�|
u0 ∈ V1

∀v ∈ V1, a(u0, v) = l(v) + P0J (K)(v).

(35)

Note that it is not immediately obvious from the def-
inition of (34), that the objective function, J (K)(u0),

is of the type J (u0(K(�a))), as in Section 3. Based
on (34), J (K)(u0) depends not only on u0(K(�a)), but
also on K(�a). However J (K)(u0) is indeed of the type
J (u0(K(�a))), because the following equality is found
(35):

J (K)(u0) = 1

P0
(a(u0, u0) − l(u0)). (36)

The relaxation result of Proposition 3 holds true in this
case.

The shape derivative with respect to the interface, ∂�a ,
is obtained using Céa’s fast derivation method (Céa (1986)).
The following Lagrangian is defined for any û0, p̂ ∈ V1 and
�a ⊂ �:

L(û0, p̂, �a) = J (K)(û0)−a(û0, p̂)+ l(p̂)+P0J (K)(p̂).

(37)

The notation ˆ in (37) means that the functions û0, p̂ are
not the solutions of any equations (it is only their optimal
values, without ,̂ which are solutions). The adjoint-state, p
is defined as the unique solution in V1 of:

∀v ∈ V1,
∂L
∂u0

· v = J (K)(v) − a(v, p0) = 0, (38)

where ∂L
∂u0

· v denotes the directional partial derivative of
the Lagrangian with respect to u0 in the direction v. In the
physical case where a and l are given by (8) and (9), p, is
defined as the solution of:

⎧
⎨

⎩

ks(p− < p >) − kg(�p− < �p >) = −1 + <K−1>−1

K
in�

kg
∂p
∂n

+ β(p− < p >) = 0 on∂�

< p > = 0.

(39)

Following the classical approach (Céa (1986), Allaire
et al. (2004)), the shape derivative of the objective func-
tion is given by dJ

d�a
· θ = ∂L

∂�a
(u0, p, �a) · θ , where the

Lagrangian is evaluated in u0, satisfying the constraints of
(35) and in p, the adjoint. Then a standard computation
yields the shape derivative of the objective function:

dJ

d�a

· θ = ∂

∂�a

(J (K)(u0 + P0p)) · θ (40)

= < K−1 >−1
(

1

Ka

− 1

Kb

)∫

∂�a

(

u0 + P0p

−
〈
< K−1 >−1

K
(u0 + P0p)

〉)

θ · nds. (41)

In practice, the resolution of the system (39) for the
adjoint state can be performed from Proposition 2. The
equality volume constraint, |�a| = θ0|�|, will be addressed
in Section 5.
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4.2 Achieving a planar steady-state profile

An alternative wear optimization objective may be a desired
surface roughness or topography. The following subsection
focuses on the case when a planar steady-state profile with
no roughness at all must be achieved. This requires a new
objective function and it is shown next that compliance is a
good candidate. By analogy with linear elasticity, one can
define compliance in this wear model to be the work done
by the loads :

l(u) = −
∫

�

f udx +
∫

∂�

g(u− < u >)ds. (42)

Minimizing compliance is a very common objective or
cost function in structural optimization for linear elastic
problems. However the problem considered is not strictly
equivalent, namely the linear forcing, l, depends on the
material distribution, K. By virtue of (11) compliance satis-
fies l(u) = a(u, u), and further examination of (8) reveals
that a(u, u) is a measure of how far the profile, u, is from
being a constant. Thus compliance can also be interpreted as
the cost function associated with the objective of achieving
a flat steady-state profile. Noting that a(u, u) = a(u0, u0),
the optimization problem is defined on the space V1 by:

inf
�a⊂�

J (u0(K(�a))) = a(u0, u0),

under the same constraints (35). The shape derivative is
calculated by introducing the Lagrangian:

L(û0, p̂, �a) = a(û0, û0)− a(û0, p̂)+ l(p̂)+P0J (K)(p̂).

The adjoint-state, p, is now defined as:

∀v ∈ V1,
∂L
∂u0

· v = 2a(v, u0) − a(v, p) = 0. (43)

It is deduced from (43) that p = 2u0, and the prob-
lem is self-adjoint. The shape derivative is dJ

d�a
· θ =

∂
∂�a

(J (K)(2u0)) · θ , and a computation yields:

dJ
d�a

· θ = 2 < K−1 >−1
(

1

Ka

− 1

Kb

)

×
∫

∂�a

(

u0−
〈
< K−1 >−1

K
u0

〉)

θ · nds. (44)

5 A topologically sensitive optimization algorithm
with equality volume constraints and perimeter
penalization

5.1 Topology optimization of run-in wear with periodic
boundary conditions

In the following, the focus is on optimizing the unit-cell of
a bi-material composite by minimizing the associated run-
in wear volume (34). The unit-cell is a rectangular domain

� = [0, L] × [0, H ] and periodic boundary conditions are
assumed. In this case, the reference pressure profile is a
constant, f = P0. As stated above, the previous results
from Section 4 obtained for homogeneous Neumann bound-
ary conditions (g = β = 0) can be applied, without
modification, to the case of periodic boundary conditions.

With periodic boundary conditions and a constant pres-
sure profile, minimizing the run-in-wear volume (Section
4.1) is identical to minimizing compliance (Section 4.2).
This is because both objective functions, J (K)(u0), defined
by (34), and l(u), defined by (42), are positively propor-
tional (using (20) and (23)):

l(u) = −P0

∫

�

udx = P0J (K)(u0).

The global minimum of the objective function,
J (K)(u0), under the constraints (35) is zero; this is
because compliance can also be interpreted as an energy:
P0J (K)(u0) = a(u0, u0) 0. In view of relation (20), the
minimum of the relaxed formulation (29) is attained by
constant profiles, u0, or equivalently, by uniform material
distributions, K =< K−1 >−1, corresponding to vanish-
ing loads (22) for u0. As a result of Proposition 3, any
minimizing sequence K(�n

a) of the original problem (27)
has the property that its inverse is weakly converging to
a constant and reciprocally, any sequence that converges
weakly to a constant is on a minimizing trajectory. Numer-
ically, the minimizing sequences, K(�n

a), exhibit features
that become vanishingly small while still respecting the
required fixed volume fractions of materials at every point
in the domain. Fig. 6 presents a typical example of mini-
mizing sequences obtained using a level-set based topology
optimization algorithm that imposes an equality volume
constraint at each iteration (see Section 5.3). Proceeding
left to right, the microstructural features increase in com-
plexity and a highly-interconnected distribution of materials
is observed. These minimizing sequences are converging
to the theoretical limit in which every point in the domain
is occupied by the prescribed volume fraction of materials.
For example, if a resource constraint with a volume fraction
of 50 % material A (white) and 50 % material B (black)
was specified, the optimal solution would be a domain in
which every material point is comprised of 50 % material
A and 50 % material B (the domain would look completely
grey).

For practical wear applications, it is desirable to avoid
these types of density-like solutions with finely distributed
materials. The reasons are those mentioned in Section 3
as well as considerations of manufacturability. Manufactur-
ing and fabrication considerations limit the complexity of
conceivable designs. This is a challenge commonly encoun-
tered in topology optimization (Allaire et al. (2014b), Guest
et al. (2004), Meisel et al. (2013), Jansen et al. (2013), Zhou
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et al. (2014), Alexandersen and Lazarov (2015), Schury
et al. (2012))— geometric constraints on the boundary, ∂�a ,
must be added to ensure that minimizing sequences of the
domain converge toward a manufacturable shape (Delfour
and Zolésio (2001), Ambrosio and Buttazzo (1993)). Sev-
eral methods are now available to address manufacturabil-
ity: these include perimeter penalization, minimum thick-
ness constraints, molding constraints, and robust topology
optimization (Allaire et al. (2014b), Guest et al. (2004),
Zhou et al. (2014), Alexandersen and Lazarov (2015), Wang
et al. (2011), Schevenels et al. (2011), Sigmund (2009),
Seepersad et al. (2006)).

Methods that rely on the shape derivative of the signed
distance function can be difficult to handle numerically
because they may require integration along rays normal to
the interface (Allaire et al. (2014b), Allaire et al. (2014a)).
Projection methods that optimize the density of material
often require extra penalizations to avoid graded materials
(Jansen et al. (2013)). For these reasons, in the context of
level-set methods, perimeter penalization remains a conve-
nient way to control the geometric complexity of optimized
structures. Although there is no formal guarantee that the
perimeter constraint will translate into manufacturable stan-
dards, it often guarantees the existence of optimal shapes
– hence convergence –, that are expected to be simplified,
improving the chance of manufacturability in a general way
(not specific to a manufacturing process). In level-set meth-
ods, penalization schemes are usually incorporated in the
level-set transport equation through a diffusive term that
can take the form of a surface energy (Chen et al. (2007),
Luo et al. (2008), Yamada et al. (2010)). The diffusive
term tends to regularize the level-set. Simultaneously, the
equality volume constraint on the constituent materials must
be accounted for in the optimization process. To address
these issues, a topology optimization method that is suit-
able for a broad range of applications and that takes a novel
approach to implement perimeter penalization and resource
constraints is presented in the following section.

5.2 Lagrange multiplier for the equality volume
constraint

Several techniques are available to handle equality cons-
traints in gradient-based optimization algorithms (Bertsekas
(1996)). In this work, a multiplier, λ, for the equality volume

constraint (|�a| = θ0|�|) is introduced and the following
Lagrangian (different from the ones introduced in Section
4) is considered:

L(�a, λ) = J (K)(u0) + τ |∂�a| + λ(|�a| − θ0|�|). (45)

The shape derivative of the Lagrangian is given by:

∂L
∂�a

· θ = dJ
d�a

· θ + τ

∫

∂�a

κθ · nds + λ

∫

∂�a

θ · nds

=
∫

∂�a

(V + τκ + λ) θ · nds, (46)

where κ is the mean curvature of the boundary, ∂�a , and
V is the velocity in the shape derivative (44) of the cost
function, J (K)(u0):

V =2<K−1 >−1
(

1

Ka

− 1

Kb

)(

u0−
〈
< K−1 >−1

K
u0

〉)

.

(47)

A descent direction for the Lagrangian is obtained by
considering a vector field, θ , whose value on the interface,
∂�a , is θ = −(V + τκ + λ)n. At each iteration, the value
of the multiplier, λ, is updated to satisfy the equality volume
constraint, |�a| = θ0|�|.

5.3 A novel modification of the level-set based topology
algorithm to impose an equality volume constraint

Several methods exist to represent and evolve numerically
the interface of a domain (Chen et al. (2007), Dapogny
(2013)). The level-set method is used in this paper, for its
simplicity in allowing topological changes caused by the
collision of moving frontiers to occur (Osher and Sethian
(1988), Allaire et al. (2004), Wang et al. (2003)). The
domain, �, is discretized on a fixed mesh and the distri-
bution of materials is described by a level-set function, φ,
satisfying:

⎧
⎨

⎩

φ > 0 in �a

φ < 0 in � \ �a

φ = 0 on ∂�a.

(48)

The domain �a is updated at each iteration by mov-
ing each point of the boundary along its outer normal at

Fig. 6 A minimizing sequence
of a bi-material distribution
converging weakly to a constant,
while respecting a resource
constraint ratio of 50 % for each
material at each iteration
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the speed v, using the following Hamilton-Jacobi equation
(Osher and Sethian (1988)):

∂φ

∂t
− v|∇φ| = 0. (49)

The negative sign in front of the speed, v, results from
the convention that φ must be positive in �a (see (48)).
In order to ensure numerical stability and to guarantee the
accuracy of the finite-difference schemes used to solve this
equation, the level-set function, φ, is usually initialized as
the opposite of the signed-distance function, d�a , of the
domain �a (Osher and Fedkiw (2004)). This property is
maintained at each iteration by a reinitialization procedure
(Osher and Fedkiw (2004)). No explicit relationship is avail-
able a priori that relates the multiplier, λ, and the volume,
|�a|, of the updated domain. The multiplier, λ, can be
determined by dichotomy (Allaire (2002)) or by augmented
Lagrangian methods (Bertsekas (1996)). Using a dichotomy
may be computationally costly as the domain may need to
be updated several times before the correct value of the
multiplier, λ, is found. A disadvantage of the augmented
Lagrangian approach is that the value of the volume multi-
plier, λ, is correct only at convergence. The implication is
that the objective function does not necessarily decrease at
each iteration.

To avoid these issues, a protocol that includes a novel
constraint on the level-set function is proposed instead. An
approximate, but affine relationship between the Lagrange
multiplier and the volume, |�a|, is proposed. Furthermore,
it is shown that the expression of the topological gradi-
ent is a straightforward extension of the speed of the shape
derivative inside the domain. This has the added benefit of
allowing for the nucleation of a material inclusion (A or B).

In order to simplify the volume calculation, a small
parameter, ε > 0, is introduced and a further constraint that
the level-set function, φ, must be constant in each material
domain at a distance, ε, from the interface, ∂�a , is imposed
(Fig. 7):

φ = 2Hε(−d�a ) − 1, (50)

where Hε is a regularized Heaviside function over an inter-
face zone of thickness 2ε. The regularization proposed by
Osher and Fedkiw (2004) is applied:

Hε(x) =
⎧
⎨

⎩

0 if x � −ε
1
2 + x

2ε + 1
2π sin

(
πx
ε

)
if − ε � x � ε

1 if x ε.

(51)

Thus φ is still a level-set function for�a because the con-
straint (48) is satisfied; but it also has a value that is constant
(either −1 or +1) at a fixed distance, ε, from the bound-
ary (Fig.7). The practical interest of (50) is that the volume,
|�a|, is related to the level-set, φ, by means of an affine
relationship. Indeed, denoting �a,ε = {x ∈ D | d�a (x) �
−ε}, and assuming the interface, ∂�a , is a closed smooth
curve, an application of a coarea formula and Gauss-Bonnet
theorem yields the affine relation (Chavel (2010)):
∫

�

φ(x) + 1

2
dx =

∫

�

Hε(−d�a (x))dx

= |�a,ε | +
∫

∂�a

∫ ε

−ε

Hε(z)

×(1 − κ(y)z)dydz

= |�a,ε | + ε|| − ε2

3

(

1 + 3

π2

)

2πN∂�.

(52)

This is compared to the actual volume, |�a|:

|�a| = |�a,ε | +
∫

∂�a

∫ 0

−ε

(1 + zκ(y))dzdy

= |�a,ε | + ε|| − ε2πN∂�a , (53)

where N∂�a is the index or winding number of the curve
∂�a (defined here in two dimensions), which is also the
number of holes or inclusions in the material distribution.
In this way the quantity defined by (52) is a good approx-
imation for the volume, |�a|, as long as: (i) the number of
inclusions, N∂�a and the parameter ε remain small, and (ii)
the extent of the domain, �a , is greater than ε (Delfour and
Zolésio (2001)). This affine relationship will be exploited

Fig. 7 On the left, is a 3D
profile of the level-set function.
On the right: the interpolation
zone for the level-set
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to determine an explicit formula for the Lagrange multi-
plier at each iteration. In the numerical implementation, the
signed distance function is computed at each iteration from
the knowledge of the level-set function φ. The Heaviside
function, Hε , is subsequently applied to ensure that the con-
straint (50) on the level-set is satisfied at the beginning of
the next iteration.

5.4 Updating scheme for moving the boundary and
allowing the nucleation of inclusions

The transport (49) is used to move the interface, ∂�a ,
at each iteration. At the beginning of each iteration,
the level-set function, φ, is defined by (50), which
implies that its gradient and its Laplacian are given by:
∇φ = −2H ′

ε(−d�a )∇d�a and �φ = 2H ′′
ε (−d�a ) −

2H ′
ε(−d�a )�d�a , respectively. In particular, the following

equalities are obtained at the interface, ∂�a :

∇φ = −2

ε
n and �φ = −2

ε
κ.

Then, assuming that these relations remain approxi-
mately exact during the next iteration, the transport (49)
with the velocity, v = −(V + τκ + λ), can be written at the
interface, ∂�a :

∂φ

∂t
− τ�φ = −2

ε
(V + λ) . (54)

This equation (extended to the whole domain, �) for
updating the level-set function, φ, is convenient because it
is affine with respect to φ. With the modified transport (54),
perimeter penalization is achieved by the diffusive term
(−τ�φ), which regularizes the level-set function (Allaire
(2007b), Yamada et al. (2010)). As remarked in Osher and
Fedkiw (2004), the level-set function solving (54) does not
respect the constraint (50) for t > 0. Thus (54) is just
a convenient approximation of the advection (49), under
the constraint (50), over a sufficiently small time interval
[0; dt]. This approximation would be exact for a velocity
field, v, constant along the normal vector, n, and if no topo-
logical change occurs (see section 3 in Allaire et al. (2014a)
and Gomes and Faugeras (1999)). After a short time, dt ,
the level-set function must be reinitialized by recomputing
it through (50).

Yamada et al. (2010) used the same equation (54) and
interpreted it as a gradient descent scheme for optimizing
a criterion formulated in terms of the level-set function, φ.
The main differences in Yamada et al. (2010) compared to
the approach presented here are, first, in the way (54) is
introduced and motivated, and second, in the fact that the
topological derivative was used instead of the shape gradi-
ent. As a consequence, reinitializing the level-set function
was not possible as it would affect the value of the objective
function. Furthermore, the width of the interpolation zone

was not controlled, leading to potential numerical issues
(creating an artificial interpolation zone may decrease the
cost function). In contrast to Yamada et al. (2010), equation
(54) is interpreted here as a transport equation whose sin-
gle purpose is to update the geometry of the domain, �a .
To comply with the constraint (50), the level-set function
is regularly reinitialized without interfering with the cost
function.

The perimeter penalization term (|∂�|) is evalu-
ated in practice by using (50), which yields ∇φ =
−2H ′

ε(−d�a )∇d�a , and a coarea formula:

|∂�| = ε

3

∫

�

|∇φ|2dx. (55)

This is convenient because computing
∫

�
|∇φ|2dx is

straightforward using the associated finite element stiff-
ness matrix. Again, one can note that the fictitious energy
introduced in Yamada et al. (2010) to penalize the mov-
ing interface is found but, in the present approach, it is
rigorously related to the perimeter by (55).

So far, (54) is justified only on the boundary ∂�a ,
although it is used in numerical practice, throughout the
whole domain �. A justification is now given such that
(54) may be used in the whole domain without modifica-
tion. Indeed, the velocity, V, defined by (47), is valid, not
only on ∂�a , but on the whole domain, because its expres-
sion is identical to the topological gradient of the objective
function, J (K)(u0) (Céa et al. (2000), Sokolowski and
Z̃ochowski (1999)). The topological gradient, dT J (x0), of
a cost function, J , at a point, x0 ∈ �, is defined when the
following asymptotic expansion holds true:

J (�a ∪ B(x0, ρ)) = J (�a) + ρd |ωd |dT J (x0) + o(ρd),

(56)

where B(x0, ρ) is the ball of center x0 and radius ρ; and d
is the dimension of the domain and |ωd | is the measure of
the unit ball in dimension d. As a result, when dT J is neg-
ative, it is advantageous to nucleate a small inclusion filled
with material A at x0. Since the level-set function has a con-
stant value, φ ∈ {−1, 1}, at a distance larger than ε from the
interface ∂�a , following the approach of He et al. (2007),
Yamada et al. (2010), Allaire and Jouve (2006), a gradient
descent on the level-set function (here normalized by the
coefficient 2

ε
) can be used to nucleate an inclusion:

∂φ

∂t
= −2

ε
dT J . (57)

This scheme is expected to nucleate holes or inclusions
wherever the topological derivative, dT J , is sufficiently
large. The determination of how large is large enough is
made by comparing the value of the topological deriva-
tive to the coefficient, ε

2dt , where dt is the time increment
used in the discretization of (57). It should be noted that
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the perimeter is not topologically differentiable according
to the definition given by (56); as such it is not taken
into account in the optimization scheme (57). Any decrease
in the objective function gained by adding new inclusions
should outweigh the associated costs incurred by increasing
the perimeter. It is indeed shown in the next section that an
appropriate discretization of the scheme (54) allows one to
prevent the topological derivative from creating too many
holes or inclusions and impacting the penalization τ |∂�a|.
As the level-set function is constant (equal to ±1) at a dis-
tance, ε, from the interface, ∂�a , and its Laplacian is zero
(�φ = 0), the implication is that the (54) and (57), mov-
ing the interface and updating the topology, are identical at
a distance, ε, from the boundary, ∂�a .

In this case, one can show using the considerations of
Section 3 that the extension of the speed, V, defined in (47)
is equivalent to the expression of the topological derivative
of the objective function, J (K)(u0). It can thus be used as
a descent direction for the objective function with respect to
the topology away from the interface, ∂�a . In this way, (54)
is used on the whole domain, �, to update the topology and
the geometry of the interface, ∂�a .

It should be noted that the expression for the topological
derivative is, in general, different from the one for the shape
derivative (see Allaire et al. (2005)). When this is the case,
the method described above can still be applied by finding
a speed, V, for the scheme (54) that is equal to the shape
derivative on the boundary, ∂�a , and to the topological gra-
dient in �a,ε with some interpolation zone, of width 2ε,
between the two derivatives.

5.5 Discretizing scheme and updating the volume
Lagrange multiplier

Equation (54) can be discretized using an implicit scheme,
for example:

φn+1 − φn

dt
− τ�φn+1 = −2

ε
(V + λ), (58)

where �φn+1 is the discretized Laplacian of the level-set
function φn+1, at time-step n + 1. The speed, V, is also
evaluated at iteration n. The use of an implicit scheme is
numerically advantageous because it removes the need for
stabilizing CFL conditions (Allaire (2007b)). This equation
can be rewritten:

φn+1 = R−1φn − 2

ε
dtR−1(V + λ), (59)

where R−1 is the iteration matrix of the implicit scheme
for the regularization operator (Id − τdt�)−1. As a con-
sequence, a hole or inclusion can be nucleated only if:

|R−1(V + λ)| >
ε

2dt
|R−1φn|. (60)

That is, nucleation occurs only when the regularized
topological derivative (R−1(V + λ)) is sufficiently large in
comparison to the regularized levelset, R−1φn. The regu-
larization naturally removes any features that are too small,
suppressing the nucleation of too many holes or inclusions.
For a value of the penalization parameter, τ , that is suffi-
ciently small, the amplitude of variations in the regularized
level-set, R−1φn, and of the regularized topological gradi-
ent, R−1(V + λ), are then limited. Thus, inclusions will
typically be nucleated when the value of the topological
gradient is greater than ε

2dt .
Finally, an approximation is used to update the volume

Lagrange multiplier, λ. A discretized version of (58) (either
by finite differences or by finite elements) is the following
linear system:

Sφn+1 = Pφn + Q(V + λ1), (61)

where P and Q are two mass matrices, S is a weighted sum
of the mass and rigidity matrix that comes from the finite
element discretization, and 1 is the discretized unit constant
function. Although φn+1 is no longer exactly given by rela-
tion (50), one can still expect (for not too large dt) that

the discretization of the quantity,
∫

�
φn+1+1

2 dx, is a valid
approximation of the volume, �a , for the next iteration.
With this assumption, the advantage of the proposed method
is that one can find an approximate value of the volume
Lagrange multiplier, λ, ensuring that the equality volume
constraint is satisfied at the next iteration. Indeed, for the
desired constraint value, |�a| = θ0|�|, the finite difference
scheme of (58) can be explicitly inverted, yielding:

λ = 2θ0− < S−1Pφn + S−1QV + 1 >

< S−1Q1 >
, (62)

where < · > denotes the discretized average operator. Thus,
an algorithm that handles equality volume constraints,
perimeter penalization, and topological sensitivity through
the use of a single updating equation is obtained.

Topology optimization algorithm:

1. For a given domain �, solve the steady-state (20) and
compute the shape derivative, V, defined by (47).

2. Compute the volume multiplier λ, using formula (62).
3. Update the sub-domain �a by solving (58).
4. Reinitialize the level-set function φn+1 as follows. (i)

Compute the signed-distance function of the domain
�n+1

a , corresponding to φn+1. (ii) Apply formula (50)
to get the reinitialized value of φn+1.

6 Numerical results & discussion

In this section, the algorithm (proposed in Section 5) is
applied to optimize the unit-cell of a periodic composite
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Fig. 8 The convergence curves for τ = 5×10−3.On the left, the topo-
logical gradient is enabled and disabled on the right. On the top, the
decrease of the Lagrangian L = J (K)(u0) + τ |∂�a | with the number

of iterations is shown and on the bottom, the respective control curve
for the resource constraint volume ratio θ0 = 50 %

material by minimizing its run-in-wear volume loss. The
constituent material wear rates are taken to be Ka = 2.5 ×
10−2mm3/Nm and Kb = 2.5 × 10−3mm3/Nm. Materials
A and B are represented in black and white, respectively.
The unit-cell, �, is square, of size 10mm × 10mm, and is
discretized into a 100 × 100 node grid with dx = 0.1mm.
The reference pressure is set to f = P0 = 0.083N/mm2,
and the elastic foundation parameters (Section 2) are ks =
0.28N/mm3, kg = 2.8N/mm. A resource ratio of θ0 =
50 % for each material is specified as the equality volume
constraint. Lastly, the following parameters were set: ε =
6dx and dt = 0.05. At each iteration, the speed (V +λ+τκ)

was multiplied by the coefficient dt
2cε|maxV | , where c is a

constant set to control the effects of the topological gradient
(56).

When it is desirable to suppress the nucleation of holes or
inclusions, the topological sensitivity of the algorithm can
be disabled by multiplying the right-hand side of the evolu-
tion (54) by the regularized Dirac function, δε = H ′

ε . Since
the support of δε is localized near the interface, new holes
cannot be nucleated away from the boundary, ∂�a , thus
cancelling the effects of the topological gradient descent
(57). An affine relationship remains between the volume
Lagrange multiplier, λ, and the volume of �a . With this
relation intact, one can conveniently impose the volume
constraint with the explicit (62) for the Lagrange multiplier,
λ.

Figure 8 shows typical convergence diagrams for the
objective function, L = J (K)(u0) + τ |∂�a|, with perime-
ter penalization. The volume constraint is respected: the
percentage ratio of material A oscillates within an accept-
able range of 2 % around the constraint value, θ0 = 50 %.

Optimal in-plane material distributions for the minimization
of run-in wear volume loss are shown on Figs. 9 (topologi-
cal gradient disabled) and 10 (topological gradient enabled).
Several material configurations are presented for cases with
increasingly severe levels of perimeter penalization (τ =
1.5 × 10−4, 5 × 10−3, 1.5 × 10−2): (i) the initial material
distribution, (ii) three intermediate profiles, (iii) the final
unit-cell design obtained by the minimization algorithm,
and (iv) a 3 × 3 tiling of the periodic unit-cell for ease of
visualization. The values of the objective function at con-
vergence for all of the cases shown in Figs. 9 and 10 are
presented in Table 1.

These results show that increasing the value of the
perimeter penalization coefficient, τ , allows one to reduce
the complexity of the final design, although at the expense
of increasing the run-in wear volume loss. In addition to
perimeter penalization, the shape of the final design can also
be influenced by two separate factors (i) the choice of the
initial configuration and (ii) by enabling or disabling the
topological gradient. If the topological gradient is disabled,
Fig. 9 demonstrates that the level-set method still allows
interface collisions to affect dramatic topological changes.

One of the useful applications of this method for wear
optimization, is to improve upon existing composite designs
from tribology literature. Table 1 shows that the initial
guess, a matrix of material A with a circular inclusion
filled with material B (a typical intuitive guess for design-
ing composites), can be significantly improved upon. The
run-in-wear volume lost decreased by more than 70 % in
all of the cases studied, including those with the highest
perimeter penalization (τ = 1.5 × 10−2). The results also
indicate that, in comparison to the calculated steady-state
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Fig. 9 Minimizing sequences
of bi-material distributions that
reduce the run-in wear volume
under periodic boundary
conditions. Results for three
values of the perimeter
penalization constant, τ , are
shown. From left to right: the
initial design, three intermediate
profiles, the optimal design
obtained at convergence and an
extension by periodicity (3×3
unit cells) for ease of
visualization. The topological
gradient is disabled

profiles for the initial configurations, the optimized steady-
state profiles are significantly more flat; this is according to
the measures described in Section 4.2. In the periodic unit-
cell framework, the numerical examples in Figs. 9 and 10
illustrate that topology optimization may be used to design
manufacturable periodic composites with improved wear
performance and controlled complexity at the composite
meso-or-microstructural scale.

The optimization of bulk tribological systems at a macro-
scopic structural scale can be achieved by replacing the peri-
odic boundary conditions with non-homogeneous Fourier
conditions (7) and by replacing the constant pressure pro-
file, P0, with a generic profile, f. The formulation presented
here is not restricted to the specific relationship between

pressure and wear profile (6) used in Section 2. The exis-
tence of a steady-state solution and the expressions for the
shape derivatives obtained in Section 4 are valid for any
H 1(�) continuous bilinear form, a, coercive on VK and
null on the constants (Feppon et al. (2015)). This implies
that some changes in the relationship between the pres-
sure distribution, p, and the profile, z (6), can be taken into
account without modification of the theory. For example, an
additional convective term of the form ∇z · u, for an appro-
priate vector field, u, could be used to include a dependence
of the pressure distribution on the direction of sliding. Cer-
tainly, more general operators beyond the Laplacian, could
also be used. These topics are to be the subject of future
work.
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Fig. 10 Minimizing sequences
of bi-material distributions that
reduce the run-in wear volume
loss under periodic boundary
conditions. Results for three
values of the perimeter
penalization constant, τ , are
shown. From left to right: the
initial design, three intermediate
profiles, the optimal design
obtained at convergence and an
extension by periodicity (3×3
unit cells) for ease of
visualization. The topological
gradient is enabled

Table 1 Optimal values for
the run-in wear volume,
J (K)(u0), depending on the
perimeter penalization, τ , and
the use of the topological
gradient, for a fixed percentage
ratio θ0 = 50 % between the
two materials.

Topological gradient Perimeter Objective function Final objective as

penalization (τ ) (inf J (K)(u0)) percentage of the

initial design

Enabled 1.5 × 10−4 0.15 5.8 %

Disabled 1.5 × 10−4 0.16 6.2 %

Enabled 5 × 10−3 0.28 11 %

Disabled 5 × 10−3 0.39 15 %

Enabled 1.5 × 10−2 0.68 26 %

Disabled 1.5 × 10−2 0.74 29 %

The run-in wear value for the initial design was J (K)(u0) = 2.58
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Fig. 11 Material distribution considered by Rowe et al. (2014)

As an illustration of the utility of the formulation for
bulk macroscopic structures, the model is calibrated with
experimental data. In Rowe et al. (2014), an experimental
steady-state surface profile was obtained through the abra-
sive wear of a bi-material distribution of nine equally spaced

inclusions (Fig. 11). The experimental parameters were
L = 20mm, H = 19.8mm, Ka = 2.24 × 10−1mm3/Nm
(in black), Kb = 1.98 × 10−2mm3/Nm (in white), ks =
3.07 × 10−1N/mm3, kg = 2.8N/mm, and P0 =< f >=
0.083MPa. Figure 12 presents the experimental steady-state
surface measured by a profilometer as well as a smoother
version of the data with noise reduction (using a Fast Fourier
Transform technique (Duhamel and Vetterli (1990)). For
each of the 3D profiles shown, an additional plot along a line
scan y = 4.8mm is also included for ease of comparison.

Figure 13a presents the profile that was predicted in
Rowe et al. (2014), using a uniform pressure profile, f =
P0. In order to match the experimental data, the sensitiv-
ity of the model to the parameter f has been computed and
used in a gradient method (see Allaire (2007a)) to derive a
non-uniform pressure profile, f, that results in a steady sur-
face profile that matches the experimental data. The shape
of this new reference pressure profile (Fig. 14) is consistent
with flat punch theory, which predicts elevated pressures
at domain edges (Ciavarella et al. (1998), Marzeda et al.

Fig. 12 On the left: experimental profile measured in Rowe et al. (2014). On the right: smoothed experimental profile after noise reduction
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Fig. 13 Top: prediction of the steady state profile under Neumann
or periodic boundary conditions and with a uniform pressure profile,
f = P0, as was done in Rowe et al. (2014). Bottom: prediction of the

steady state using the non-uniform pressure profile, f, of Fig. 14 and
Neumann boundary conditions

(2001)) (Fig. 5). Figure 13 shows the steady-state surface
profile that is predicted by the model with this non-uniform
pressure profile.

This methodology demonstrates that the formulation pre-
sented can be calibrated with experimental data, and opti-
mized material configurations can be identified for specific
experimental set-ups. However, additional modifications
of the proposed model must be considered. Close atten-
tion must be paid to specifying experimentally relevant
boundary conditions. The example considered by Rowe
et al. (2014) shows that periodic or homogeneous Neumann
boundary conditions combined with a uniform pressure
profile, f = P0, are not able to capture the rounded fea-
tures found at sample edges of experimentally determined
steady-state wear profiles. On the other hand, inhomoge-
neous Neumann boundary conditions with a source term

(g = 0 described in (7)) may not be physically relevant
because they must apply throughout the entire wear pro-
cess, including the initial conditions where the surface may
be flat and g = 0. Furthermore, considering a non-uniform
pressure profile, f, may not be sufficient to obtain accept-
able predictions, since this profile may depend itself on
the material distribution, K (it has been observed numer-
ically that the example calibrated pressure profile does
not result in rounded edges when changes in the material
distribution occur near the boundary). Future work could
focus on proposing models for the behavior of this pressure
profile parameter with respect to experimentally relevant
constraints.

Finally, the optimization method proposed in this arti-
cle is also relevant for broader applications of topol-
ogy optimization beyond wear performance. Whenever the
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Fig. 14 Calibrated pressure profile to match the experimental data of Fig. 12

topological gradient is an extension of the velocity of the
shape derivative of the interface, ∂�a , the method offers
substantial advantages related to imposing equality con-
straints (with affine relationships to the volume), controlling
feature complexity, and topological sensitivity. The key
ingredient of the proposed approach is the constraint (50) on
the level-set function. This constraint allows one to obtain
an evolution equation for the interface that is linear and it
also allows one to use the topological gradient beyond the inter-
face zone (at distances greater than ε from the zero levelset).

7 Conclusion

A framework has been presented to optimize the perfor-
mance of multimaterial composites subject to sliding abra-
sive wear. The optimization focuses on the steady-state wear
profile which is characterized by an elliptic partial differ-
ential equation. The steady-state solution can be directly
determined from known material distributions, allowing
time-independent optimization to be applied. Common wear
objectives are identified and formalized for optimization,
like run-in volume loss and surface roughness. A relax-
ation result is presented that demonstrates limitations of
scale that must be considered in the optimization scheme.
This framework has been applied to the wear optimization
of a bi-material periodic unit-cell (representing the meso-
or-microstructural design of composite materials). Numer-
ical examples demonstrate the reduction of material loss
made possible by designs guided by topology optimization.
They also illustrate how target steady-state wear surface
roughness may be achieved. Initial results and perspec-
tives for application of the proposed scheme to macroscopic
structural design without periodic boundary conditions are
provided. Several approaches to control the complexity
of designs are proposed in order to respect the scale

limitations of the underlying physical wear model in the
optimization scheme. Broader applications of these con-
trol schemes for other types of problems, beyond wear, in
topology optimization are discussed.
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Neittaanmäki P, Sokolowski J, Zolesio JP (1988) Optimization of
the domain in elliptic variational inequalities. Appl Math Optim
18(1):85–98

Osher S, Fedkiw R (2004) Level set methods and dynamic implicit
surfaces, vol 57

Osher S, Sethian J (1988) Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formula-
tions. J Comput Phys 79(1):12–49
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